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a b s t r a c t

A quantitative structure-property relationships (QSPR) model, correlating the light sensitivity against
theoretical molecular descriptors, was developed for a set of 1,4-dihydropyridine calcium channel antag-
onist drugs. These compounds are characterized by a high tendency to degradation when exposed to light,
furnishing in the most of cases a related oxidation product from aromatization of the dihydropyridinic
ring. Photodegradation was forced by exposing the drugs to a Xenon lamp, in accordance with the ICH
international rules, and degradation kinetics was monitored by spectrophotometry.

The photodegradation rates combined with a series of descriptors related to the chemical structures
were computed by Partial Least Squares (PLS) multivariate analysis. An accurate selection of the vari-
ables, fitting at the best the PLS model, was performed. Two descriptors related to the substituent
hotodegradation

escriptors
LS

information on both the dihydropyridinic and benzenic rings and four molecular descriptors, were
selected. The QSPR model was fully cross validated and then optimized with an external set of novel
1,4-dihydropyridine drugs, obtaining very satisfactory statistical results. The good agreement between
predicted and measured photodegradation rate (R2 = 0.8727) demonstrated the high accuracy of the QSPR
model in predicting the photosensitivity of the drugs belonging to this class. The model was finally

ool to
proposed as an effective t

. Introduction

Quantitative structure-property relationships (QSPR) tech-
iques help to establish a correlation between the molecular
tructures and chemical or chemical–physical properties of a
ongeneric series. In the last years, QSPR approach has been inves-
igated in various fields of chemistry, biochemistry, pharmacy and
nvironmental chemistry [1]. In the modern pharmaceutical chem-
stry, the prediction of required properties of new molecules plays
very important role throughout the overall drug design. The up-

o-date techniques pursue this target by means of a mathematical
odel. A QSPR relationship can be used to identify the parameters

ffecting a specific property of the molecules or to predict the same
roperty for other molecules belonging to the series [2,3].

Elaboration of a reliable and robust experimental relationship
epresents the real core in a QSPR analysis [4]. An empirical equation
n a QSPR model is generally expressed as:
(P) =
i=n,j=m∑

i=1,j=1

aijDij + b

∗ Corresponding author. Tel.: +39 0984 493201; fax: +39 0984 493201.
E-mail address: giuseppina.ioele@unical.it (G. Ioele).

039-9140/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2009.06.009
design new congeneric molecules characterized by high photostability.
© 2009 Elsevier B.V. All rights reserved.

where P is the property of interest; aij and b are the regression coef-
ficients, Dij are parameters characterizing each molecular structure
of the series, named descriptors [5].

The selection of the descriptors represents an essential step in
improving the quality of the model. This choice has become more
and more demanding because of the high number of descriptors
proposed in literature [6]. The most common descriptors are consti-
tutional or topological parameters explaining the number of carbon
atoms or the chemical bonds in the molecules. Another important
series of chemical descriptors, namely quantum descriptors, define
the electronic and geometric properties of the molecules and their
interactions [5]. Recently, a quantum chemical approach has been
used to determine energetic information of the molecules and, in
particular, to define the minimum energy configuration [3].

In a QSPR elaboration, it is difficult to establish as well if a chemi-
cal group can lead a significant variation on the different properties
in a congeneric series. Moreover, it is daring to take as a reference
the data of analogue works in literature because a substituent can
give an important effect into a class of compounds and have no
effect in another class [4]. The continuous development of chemo-

metric techniques has represented in the last years a very important
support to the elaboration of QSPR models. Principal Component
Analysis (PCA), Partial Least Squares (PLS) and Analysis of Vari-
ance (ANOVA) have proved to be very useful tools in testing a high
number of variables and then in selecting those that significantly
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nfluence the system. This approach has permitted the building
f complex QSPR models, characterized by high prediction power
7–14].

In this work, a set of nine 1,4-dihydropyridine (1,4-DHP)
ntihypertensive drugs, Amlodipine (AML), Felodipine (FEL), Ler-
anidipine (LER), Nisoldipine (NIS), Nitrendipine (NIT), Nicardipine
NIC), Nifedipine (NIF), Manidipine (MAN), Nimodipine (NIM) has
een submitted to a QSPR study. 1,4-DHP drugs are calcium
ntagonist agents largely used in the treatment of cardiovascular
isorders, above all hypertension and cardiac arrhythmias [15–18].
nfortunately, a feature common of all compounds of this class is

he high photosensitivity. Light catalyzes their oxidation to pyri-
ine derivatives, lacking in therapeutic effect [19–23] and, in some
ases, to secondary photoproducts [24–26]. Aromatization of 1,4-
HP has also attracted considerable attention recently because it
as been demonstrated that metabolism of those drugs involves an
nalogous cytochrome P-450 catalyzed oxidation in the liver [27].

This work aims at defining a correlation between the pho-
odegradation rate of 1,4-DHP drugs and their chemical structure by

eans of QSPR modeling. The successful application of the model in
redicting the light sensitivity of related compounds, or in design-

ng new congeners with a potential high photostability, represents
he final target.

Contributions about the application of QSPR analysis to pho-
odegradation studies have been published. An interesting QSPR

odel for predicting the photodegradation rate of chlorinated poly-
yclic aromatic hydrocarbons has been proposed [28]. A set of
uantum chemical descriptors has been adopted to develop QSPR
odels for estimation of photodegradation half-lives of persistent

rganic pollutants [28,29]. Structural descriptors have been used to
uild a QSPR relationship used in the study of photolysis mecha-
isms [30].

Quantitative structure-activity relationship (QSAR) analysis has
een applied to the 1,4-DHP class to establish the calcium chan-
el antagonist activity as a function of some theoretically derived
escriptors [31,32]. In particular, the binding of the molecules to
he receptor has been expressed by topology, hydrophobicity and
urface area descriptors [32].

The proposed QSPR study was supported by multivariate regres-
ion techniques, because of their ability in computing a high
umber of variables. In particular, a PCA elaboration followed by
LS regression was applied to both experimental and calculated
ata with the aim to select a number of predictors furnishing the
ost useful information to define a well-fitted multivariate model.
With the aim to use homogeneous results in the model build-

ng, the photodegradation process was standardized, by performing
ight exposure according to the international rules [33].

. Materials and methods

.1. Apparatus

Absorption spectra were registered on the � range of
90–450 nm in a 10 mm quartz cell by means of a PerkinElmer
ambda 40P Spectrophotometer at the following conditions: scan
ate 1 nm s−1; time response 1 s; spectral band 1 nm. The software
V Winlab 2.79.01 (PerkinElmer) was used for spectral acquisition
nd elaboration.

Drugs photodegradation was carried out according to the “Guide
or the Photostability Testing of New Drug Substances and Products”

ecommended by the International Conference on Harmonization
f Technical Requirements for Registration of Pharmaceuticals for
uman Use [33].

Light exposure was performed in a light cabinet Suntest CPS+
Heraeus, Milan, Italy), equipped with a Xenon lamp. The apparatus
(2009) 1418–1424 1419

was fitted with an electronic device for irradiation and temper-
ature measuring and controlling inside the box. The system was
able to closely simulate sunlight and to appropriately select spectral
regions by interposition of filters.

2.2. Chemicals

FEL, NIC, NIF, NIT and Cilnidipine (CIL) were purchased from
Sigma–Aldrich Co. (Italy). AML (Pfizer, Italy), LER (Recordati, Italy),
MAN (Chiesi, Italy), NIM (Bayer, Italy) and NIS (Bayer, Italy) were
generous gifts from the respective pharmaceutical companies.
Barnidipine (BAR) was extracted from the pharmaceutical specialty
Libradin (Sigma–Tau, Italy). Absolute ethanol (J.T. Baker, Holland)
was of spectrophotometric grade.

2.3. Standard solutions

A series of standard solutions of each analyte in ethanol was pre-
pared and used to set up the calibration curves. These relationships
were used to carry out the drug concentration. Solute concentration
was within the range 5.0–50.0 �g/ml for all the compounds.

2.4. Photodegradation conditions

The drug solutions (20 �g/ml), in a quartz cuvette perfectly stop-
pered, were directly light irradiated in a � range between 300 and
800 nm, by means of a glass filter, according to the ID65 standard of
the ICH rules; the power was maintained to 350 W/m2, correspond-
ing to a light dose of 21 kJ/min m2, at the constant temperature of
25 ◦C. The UV spectra, just after preparation (t = 0) and at the follow-
ing times: 2, 5, 8, 10, 15, 20, 30, 45, 60, 90, 120, 180 and 300 min,
were recorded.

The irradiation conditions were maintained to a moderate level
because of the high sensitivity of the drugs to light, allowing so to
obtain a more accurate control on the photodegradation processes.

3. Descriptors

A large number of molecular descriptors in setting the cal-
ibration set were screened using multivariate techniques. PLS
analysis was adopted to select the descriptors significantly cor-
related with the photosensitivity of the studied molecules. Six
descriptors, representative of the chemical features, emerged as
the most responsible for the photosensitivity of the studied drugs:
molecular volume (MV), hydrophobic constant of Hansch–Fujita
(�x), polar surface area (PSA), H bond donors (HDon), H bond accep-
tors (HAcc) and Octanol/Water Partition Coefficient (X log P).

3.1. Molecular volume (MV)

The volume of a molecule has a clearly conventional character
and it is used sometimes as a molecular index in QSAR equations
[34]. MV can also be employed as a measure of molecular similarity
and help in understanding the steric requirements of a receptor.

3.2. Hydrophobic constant of Hansch–Fujita (�x)

The hydrophobic constant of Hansch–Fujita describes the con-
tribution of a substituent to the lipophilicity of a compound and is
defined as:
�x = log P(RX ) − log P(RH)

where R is the molecular residue and X is the substituent. �H = 0 is
the hydrophobic constant for hydrogen and it is used as referent.
This predictor has a positive value if the substituent is hydrophobic
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Table 1
Chemical substituents on the dihydropyridinic drugs

.

Drug R2 R3 R5 R2′ R3′

AML CH2OCH2CH2NH2 COOC2H5 COOCH3 Cl H
FEL CH3 COOC2H5 COOCH3 Cl Cl
LER CH3 COOC(CH3)2CH2 COOCH3 H NO2

N(CH3)CH2CH2CH(Ph)2
MAN CH3 COOCH2CH2-piperazin-CH(Ph)2 COOCH3 H NO2
NIC CH3 COO(CH2)2N(CH3) COOCH3 H NO2

CH2Ph
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N
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IF CH3 COOCH3
IM CH3 COOCH2CH2OCH3
IS CH3 COOCH2CH(CH3)2
IT CH3 COOC2H5

nd a negative value if the substituent is hydrophilic [35]. This con-
tant must be also calculated for the entire molecule because it is
nfluenced by the overall hydrophobicity from the compound. The
um of the �x constants of the substituents in a molecule represents
he global descriptor of hydrophobicity for a molecule [36].

.3. Polar surface area (PSA)

PSA of a molecule is used according to the approach devel-
ped by Ertl et al. [37] and it is defined as the surface sum over
f polar atoms. This molecular descriptor explains the electrostatic
nd polarization interactions between the solute and the solvent.
ll the interactions are obviously weak interactions such as higher
ultipole, dipole and induced-dipole interactions. So, PSA can be

onsidered an important electrostatic descriptor during a QSPR
tudy to understand the charge distribution of the molecules and
se this information to project new drugs with desired properties
34].

.4. H bond donors (HDon) and H bond acceptors (HAcc)

Different hydrogen bond donors and acceptors are two impor-
ant parameters introduced by Lipinski et al. [38] to describe

olecular properties important for a drug’s pharmacokinetics in
he human body. The availability to form H bonds is an important
arameter to define the physico-chemical properties of a drug.

.5. Octanol/Water partition coefficient (X log P)

log P is a quantitative descriptor of lipophilicity and estimates
he propensity of a neutral compound to differentially dissolve in
wo immiscible phases. It is usually referred to the octanol–water
artition coefficient (P), expressed as logarithmic ratio. Hansch’s
ork has started a series of studies about the biological activ-

ty varying in relation to the hydrophobic character of a molecule
39,40]. Nowadays, log P is commonly used in QSAR studies and
rug design since it relates to drug absorption, bioavailability,

etabolism, and toxicity. The calculation of the log P is imple-
ented following the X log P approach developed by Wang et al.

41]. The X log P method is an atom-additive method that calculates
he octanol/water partition coefficient of neutral organic molecules
y summing up atom-based and substructure-based (correction
actors) contributions.
COOCH3 NO2 H
COOCH(CH3)2 H NO2
COOCH3 NO2 H
COOCH3 H NO2

3.6. Software

The theoretical descriptors from the chemical structure of the
compounds were calculated by means of the Adriana.Code 2.0
software (Molecular Networks GmbH Computerchemie, Erlangen,
Germany). This software executes the calculation of physico-
chemical descriptors through empirical models for the influence of
atoms in molecules and mathematical transformation techniques.

The substituent descriptors were calculated by ACD/
ChemSketch 10.0 software (Advanced Chemistry Development,
Inc., Toronto, Canada). This software is able to present and manip-
ulate the molecular structure and allows to directly access the
electronic substituent constants like hydrophobic constant of
Hansch–Fujita and molecular volume.

PLS analysis was performed by application of the algorithms
supported by the software “The Unscrambler 9.7” (Camo Process
As., Oslo, Norway). This software also allowed to optimize the cali-
bration models and develop validation procedures.

4. Results and discussion

A series of nine 1,4-DHP drugs, present in the most commer-
cialized specialties, were collected to perform the QSPR study.
Table 1 summarizes the different chemical groups in the studied
drugs. Most of these drugs furnish the pyridine by-product as the
only photodegradation product, according to a first-order degrada-
tion kinetics [20,42–46]. Nevertheless, after a variable time from
this oxidation, secondary photoproducts come from degradation of
some molecules as NIF [25], LER [47] and NIS [48].

4.1. Photodegradation kinetics

As a first step of the work, the drugs were subdued to forced pho-
todegradation under the standard conditions reported above. The
sequence of the UV spectra during light irradiation was recorded for
each drug solution (20.0 �g/ml). Most of the drugs resulted com-
pletely degraded after ten minutes of light irradiation. In contrast,
AML and FEL degraded at all after two hours.
A gradual decrease of the maximum peak in the zone
350–370 nm, that is a typical signal of the 1,4-DHP structure, and
a contemporary increase of a new peak in the zone 260–280 nm,
characteristic for the pyridinic structure, was observed for all the
compounds. The residual concentration of the drugs was calculated
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Table 2
Photodegradation kinetics parameters.

Drug k R2 t0.33 log t0.33

AML −1.10e−05 0.9991 15 982 4.203
FEL −1.60e−05 0.9992 11 027 4.042
LER −9.38e−05 0.9827 608 2.783
MAN −2.73e−04 0.9884 85 1.926
NIC −2.08e−03 0.9985 218 2.338
NIF −8.08e−04 0.9957 170 2.230
NIM −9.77e−04 1.0000 30 1.474
N
N
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PCA transformed the original data matrix in a new matrix of

T
C

D

A
F
L
M
N
N
N
N
N

IS −5.90e−03 0.9954 98 1.992
IT −1.49e−03 0.9963 106 2.024

is expressed as seconds.

y using the absorbance measurement of the peaks between 350
nd 370 nm, because of the insignificant absorbance of the degra-
ation products after 330 nm. Effectively, also the main secondary
hotoproducts from some compounds do not have absorbance in
his region [19,49].

Nevertheless, in order to obtain data as homogeneous as pos-
ible for the QSPR modeling, the spectral data used in calibration
ere limited to degradation equivalent to a third of the starting

oncentration (33.33%). Within the examined times, all the prod-
cts were observed to follow a first-order kinetics. Therefore the
bsorbance data until the time (t0.33) necessary to reach this degra-
ation percentage were collected.

A good linearity was obtained by plotting the logarithm of
bsorbances as a function of time, in agreement with the following
quation:

og %A = −kt + 2

here %A is the percentage of residual absorbance, k the pho-
odegradation rate constant, t the time (s), 2 is the logarithm of
tarting absorbance (100%).

Table 2 summarizes the degradation kinetics parameters cal-
ulated for the drug investigated. The data were carried out from
hree replicate analyses for each sample and very low variance was

easured in all the cases.

.2. Selection of descriptors

QSPR modeling needed to choose the variables affecting the
rugs photodegradation. The selection of the descriptors responsi-
le of significant variations in the molecular properties represents
key step in a multivariate modeling. This choice has to be carefully
erformed, because excluding descriptors carrying useful informa-
ion from the system may lead to misleading results in building the

odel. At the same time, an indiscriminate use of a higher number
f predictors could increase random noise and lower the robustness

f the model [50,51].

Since the number of known descriptors is very high and a
ull selection procedure is practically unfeasible, some methods
or simplification have been developed. One of the techniques for
educing full search procedure is the multilinear regression which

able 3
alibration set.

rug log t0.33 MVR2 �R2 MVR3 �R3 MVR5 �R5 M

ML 4.204 73.84 −0.80 67.28 0.51 50.78 −0.02 2
EL 4.043 30.79 0.46 67.28 0.51 50.78 −0.02 2
ER 2.784 30.79 0.46 298.17 4.78 50.78 −0.02
AN 1.927 30.79 0.46 274.03 2.47 50.78 −0.02
IC 2.338 30.79 0.46 168.25 1.88 50.78 −0.02
IF 2.231 30.79 0.46 50.78 −0.02 50.78 −0.02 2
IM 1.475 30.79 0.46 90.15 −0.44 84.17 0.85
IS 1.993 30.79 0.46 100.67 1.39 50.78 −0.02 2
IT 2.025 30.79 0.46 67.28 0.51 50.78 −0.02
(2009) 1418–1424 1421

is based on a stepwise forward selection through extension of the
correlation to new descriptors until a statistic parameter becomes
better than that previously calculated one.

In the present study, PLS algorithm was applied to analyze
the interactions between photosensitivity and descriptors. PLS has
proved to be able in not only defining the relationship between
dependent variables and predictor variables, but also reducing the
number of the descriptors [14]. The root mean square error of pre-
diction (RMSEP) was adopted as a discriminating criterion in PLS
calibration and the correlation coefficient R2 was used to evaluate
the model fitting. Usually, a R2 value higher than 0.3 can be consid-
ered statistically meaningful, a value greater than 0.5 is indicative
for a good model and a value over 0.8 proves an excellent correla-
tion.

A screening of the descriptors was made by focusing on just
those describing constitutional, electrostatic and geometrical ones
in consideration of the electronic and steric aspects of the arom-
atization reaction [52,53]. In fact, due to both technological and
biological importance of 1,4-DHP oxidation, the reaction has been
the subject of several studies [54–56]. The chemical–physical prop-
erties of the substituents on both the benzene and dihydropyridine
moieties were particularly investigated, because they characterize
the various 1,4-DHP drugs. All descriptors were calculated on the
neutral species.

A series of electronic descriptors relative to the entire molecules
or geometrical and hydrophobic descriptors for the chemical
substituents gave significant correlation with the drug photosen-
sitivity. In particular, by applying the PLS procedure, the molecular
descriptors PSA, HDon, HAcc and X log P, relative to the global
chemical structures, were selected. Among the variables describ-
ing the chemical substituents, the geometrical descriptor MV and
the hydrophobic descriptor �x, showed the most significant influ-
ence on photodegradation. Each drug was so described by fourteen
independent descriptors.

The logarithm of the time necessary to cause a degradation of a
third for each compound (log t0.33) was used as dependent variable.
The calibration set listing the values of log t0.33 and the descriptors
relative to all the compounds is reported in Table 3.

4.3. QSPR model

The calibration set, based on the values of log t0.33 (Y variable)
as a function of fourteen molecular descriptors (X variables), was
used to elaborate the QSPR model by means of PLS analysis.

PLS provided to perform interdependent PCA decomposition of
the original data in both X and Y matrices in which new variables,
called principal components or factors, were calculated as linear
combinations of the old ones.
scores (T) and loadings (P):

X = TPT + EX (EX = X − Xmodel)

Y = UQ T + EY (EY = Y − Ymodel)

VR2′ �R2′ MVR3′ �R3′ HDon HAcc PSA X log P

5.67 0.59 0.00 0.00 3.00 7.00 99.88 1.84
5.67 0.59 25.67 0.59 1.00 5.00 64.63 3.73
0.00 0.00 27.06 −0.27 1.00 9.00 113.69 6.41
0.00 0.00 27.06 −0.27 1.00 10.00 116.93 4.78
0.00 0.00 27.06 −0.27 1.00 9.00 113.69 3.54
7.06 −0.27 0.00 0.00 1.00 8.00 110.45 1.95
0.00 0.00 27.06 −0.27 1.00 9.00 119.68 2.66
7.06 −0.27 0.00 0.00 1.00 8.00 110.45 3.03
0.00 0.00 27.06 −0.27 1.00 8.00 110.45 2.38
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Table 4
Prediction set.

R2 R3 R5 R2′ R3′

Chemical substituents
BAR CH3 COO-pyrrolidin-CH2Ph COOCH3 H NO2
CIL CH3 COOCH2CH2OCH3 COOCH2CH=CHPh H NO2

log t0.33 MVR2 �R2 MVR3 �R3 MVR5 �R5 MVR2′ �R2′ MVR3′ �R3′ HDon HAcc PSA X log P

P
2 0.00 0.00 27.06 −0.27 1.00 9.00 113.69 3.09
4 0.00 0.00 27.06 −0.27 1.00 9.00 119.68 4.08
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selected descriptors, resulted equal to four, as it is evident in the
graphic of Fig. 3, showing the residual variance.

Figs. 4 and 5 showed the graphical reports of “Scores” and “X- and
Y-Loadings”, respectively. Score graph showed the distribution of
redictors
BAR 2.20 30.79 0.46 171.85 1.67 50.78 −0.0
CIL 2.02 30.79 0.46 90.15 −0.44 136.14 2.3

here E is the difference between the measured and calculated X
nd Y values.

The principal components are sorted by decreasing information
ontent so that most of the information is preserved in the first few
nes. Each principal component was extracted from the indepen-
ent variables and simultaneously maximally correlated with the
ariance of the dependent variable [57–59].

The model was validated by fully cross procedure, adopting a
eave-one-out procedure, and satisfactory statistical results were
arried out. Values of 0.3984 and 0.8453 for RMSEP and R2 were
btained, respectively, associated with an optimized number of
ve principal components. At this moment, the selected descriptors
emonstrated to furnish useful information for the model building.

.4. Photosensitivity prediction of external samples

An independent validation was performed by applying the
efined QSPR model to two 1,4-DHP drugs external to the cali-
ration set. The tested compounds were BAR and CIL, both drugs
ecently commercialized. These drugs were subdued to stress pho-
odegradation under the same stressing conditions adopted for the
alibration samples and the relative values of t0.33 were measured.
able 4 lists the chemical substituents and the descriptor values
elative to both the molecules.

When the photodegradation rate of these samples was predicted
y the QSPR model, unsatisfactory statistical results were unfortu-
ately obtained. Errors not below 8% on the t0.33 value for BAR was
arried out, but the results were particularly incorrect for CIL, whose
elative errors were about 26%. The failure of the model was sup-
osed to be caused by bad information within the data provided by
he used descriptors. All the X variables do not clearly contribute
seful information to build a robust model.

An optimization was so necessary so to improve as much as pos-
ible the prediction ability of the model. For this aim, the fully cross
alidation was coupled with the Martens’ Uncertainty Test [60],
hich allowed the identification of perturbing samples or vari-

bles and then a further focusing of the most significant X-variables
Fig. 1). The weight of each descriptor in the model building was so
onsidered, so that those furnishing useful information were sin-
led out [61,62]. This procedure provided to identify the descriptors
V and �, both for the substituent R5, as “bad-descriptors”, respon-

ible of useless or noising information. So the overall contribution
f the substituent R5 to the model was removed and the model was
ebuilt on twelve descriptors.

PLS procedure carried out the following model equation:

og t0.33 = 8.737e − 03MVR2 − 0.299�R2 − 7.872e − 04MVR3

+0.162�R3 − 0.182MVR2′ + 0.295�R2′ − 2.316e
− 02MVR3′ + 3.743e − 02�R3′ + 0.188HDon

− 0.222HAcc − 1.499e − 02PSA + 5.839e − 03X log P

+ 10.773
Fig. 1. Weight of the descriptors by Martens’ Uncertainty Test.

When internal validation was computed on the optimized
model, values of 0.3616 for RMSEP and 0.8727 for R2, respectively,
were obtained, even demonstrating an improved prediction ability
of the ultimate model. Application of this model to the prediction
samples gave successful results with relative errors of 2.5% and
12.62% for BAR and CIL, respectively. The measured and predicted
photodegradation data of the training set were plotted in Fig. 2.
The relative values for the external samples were also depicted
in this graph. These results demonstrated that the optimization
step notably improved the reliability and robustness of the model.
The optimal number of principal components, calibrated for twelve
Fig. 2. Plot of predicted vs. measured photodegradation rate for 1,4-DHP drugs. The
external Figure samples are marked.
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Fig. 3. Residual variance from validation of the model vs. Principal Components.

t
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s

Fig. 4. Score plot of the optimized QSPR model.

he 1,4-DHP into the model space (PC1 vs. PC2), distributed accord-
ng to X and Y variables. This graph helped to determine which
ariables were responsible for differences between samples. The
rugs to the right of the score plot had a large value for variables to
he right of the loading plot, and a small value for variables to the
eft of the loading plot; the most stable 1,4-DHP were accordingly

ituated in same direction of log t0.33.

Fig. 5. X- and Y- Loading plot of the optimized QSPR model.
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4.5. Design of photostable dihydropyridine molecules

The study of both model equation and validation report per-
mitted to evaluate the weight of the used predictors on the
photostability of the drugs. The molecular descriptors HAcc and
PSA should be maintained low. The value of HDon has to be high,
whereas the value of X log P is less influential. The substituents R2′
and R3′ should be small, since a low value of MV presents a discrete
significance in increasing stability. At the same time, photostability
is decreased if these groups have hydrophilic features. In fact, the
presence of a nitro group on the 2′ position assists an intramolec-
ular disproportionation reaction, followed by aromatization of the
pyridinic ring [63]. Analogously, a low value of MV is necessary,
while a hydrophobicity feature seems unimportant. On the con-
trary, the R2 substituent should have large volume and hydrophilic
characteristics.

5. Conclusions

In conclusion, we have built a QSPR model correlating the pho-
tostability of the 1,4-DHP drugs with global and structural fragment
descriptors. The influence of different substituents on both benzene
and pyridinic rings has been evaluated in terms of hydrophobic,
electronic and steric parameters. The model has demonstrated
a good prediction ability when applied on congeneric drugs not
enclosed in the calibration modeling. The value of 0.8727 for the cor-
relation coefficient R2 obtained from the model validation, showed
that the model has good predictive ability and robustness for esti-
mating the photodegradation rate values of 1,4-DHP drugs. The
proposed model could be applied to new compounds not covered
by the original data sets. In addition, some rules have been derived
from the model, which may be used by pharmaceutical chemists
as a guideline on the contribution of the chemical substituents on
photosensitivity of 1,4-DHP molecules. These rules could be used
to identify novel 1,4-DHP structures characterized by high light
stability.
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67–75.
40] L.C. Tavares, A. Tavares do Amaral, Bioorg. Med. Chem. 12 (2004) 1377–1381.
41] R. Wang, Y. Gao, L. Lai, Perspect. Drug Discov.Des. 19 (2000) 47–66.

[
[

[
[

(2009) 1418–1424

42] X.Z. Qin, J. De Marco, D.P. Ip, J. Chromatogr. A 707 (1995) 245–254.
43] G. Ragno, M. Veronico, C. Vetuschi, Int. J. Pharm. 99 (1993) 351–355.
44] G. Ragno, M. Veronico, C. Vetuschi, Int. J. Pharm. 119 (1995) 115–119.
45] G. Ragno, C. Vetuschi, Die Pharmazie 53 (1998) 628–631.
46] G. Ragno, F. Aiello, A. Garofalo, G. Ioele, M.S. Sinicropi, Il Farmaco 58 (2003)

909–915.
47] A.B. Baranda, R.M. Alonso, R.M. Jiménez, W. Weinmann, Forensic Sci. Int. 156

(2006) 23–34.
48] C. Vetuschi, G. Ragno, M. Veronico, A. Risoli, A. Giannandrea, Anal. Lett. 35

(2002) 1327–1339.
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